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QUANTITY-BASED RM



Chapter 2

SINGLE-RESOURCE
CAPACITY CONTROL

2.1 Introduction
In this chapter, we examine the problem of quantity-based revenue

management for a single resource; specifically, optimally allocating ca-
pacity of a resource to different classes of demand. Two prototypical
examples are controlling the sale of different fare classes on a single flight
leg of an airline and the sale of hotel rooms for a given date at differ-
ent rate classes. This is to be contrasted with the multiple-resource—or
network—problems of Chapter 3, in which customers require a bundle of
different resources (such as two connecting flights or a sequence of nights
at the same hotel). In reality, many quantity-based RM problems are
network RM problems, but in practice, they are still frequently solved
as a collection of single-resource problems (treating the resources inde-
pendently). For this reason, it is important to study single-resource RM
models. Moreover, single-resource models are useful as building blocks
in heuristics for the network case.

We assume that the firm sells its capacity in distinct classes1 that
require the same resource. In the airline and hotel context, these classes
represent different discount levels with differentiated sale conditions and
restrictions. In the early parts of this chapter, we assume that these
products appeal to distinct and mutually exclusive segments of the
market: the conditions of sale segment the market perfectly into
segments—one for each class. Customers in each segment are eligible
for or can afford only the class corresponding to their segment. Later in

1In the case of airlines, these are called fare classes. Terms like rate products, rate classes,
revenue classes, booking classes and fare products are also used. We shall use the generic
term class in this chapter.
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the chapter, we look at models that do not assume that customers are
perfectly segmented, but instead that they choose among the classes.

The units of capacity are assumed homogeneous, and customers de-
mand a single unit of capacity for the resource. The central problem
of the chapter is how to optimally allocate the capacity of the resource
to the various classes. This allocation must be done dynamically as de-
mand materializes and with considerable uncertainty about the quantity
or composition of future demand. The remainder of the chapter focuses
on various models and methods for making these capacity-allocation de-
cisions.

2.1.1 Types of Controls
In the travel industry, reservation systems provide different mecha-

nisms for controlling availability. These mechanisms are usually deeply
embedded in the software logic of the reservation system and, as a re-
sult, can be quite expensive and difficult to change. Therefore, the con-
trol mechanisms chosen for a given implementation are often dictated
by the reservation system. The details of reservations systems and the
constraints they impose are discussed in greater detail in Chapters 10
and 11. Here, we focus on the control mechanisms themselves.

2.1.1.1 Booking Limits
Booking limits are controls that limit the amount of capacity that can

be sold to any particular class at a given point in time. For example, a
booking limit of 18 on class 2 indicates that at most 18 units of capacity
can be sold to customers in class 2. Beyond this limit, the class would
be “closed” to additional class 2 customers. This limit of 18 may be
less than the physical capacity. For example, we might want to protect
capacity for future demand from class 1 customers.

Booking limits are either partitioned or nested: A partitioned booking
limit divides the available capacity into separate blocks (or buckets) —
one for each class—that can be sold only to the designated class. For
example, with 30 units to sell, a partitioned booking limit may set a
booking limit of 12 units for class 1, 10 units for class 2, and 8 units for
class 3. If the 12 units of class 1 capacity are used up, class 1 would
be closed regardless of how much capacity is available in the remaining
buckets. This could be undesirable if class 1 has higher revenues than
do classes 2 and 3 and the units allocated to class 1 are sold out.

With a nested booking limit, the capacity available to different classes
overlaps in a hierarchical manner—with higher-ranked classes having
access to all the capacity reserved for lower-ranked classes (and perhaps
more). Let the nested booking limit for class be denoted Then
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is the maximum number of units of capacity we are willing to sell
to classes and lower. So in Figure 2.1, the nested booking limit on
class 1 and lower (all classes) would be (the entire capacity), the
nested booking limit on classes 2 and 3 combined would be and
the nested booking limit on class 3 alone would be We would
accept at most 30 bookings for classes 1, 2, and 3, at most 18 for classes
2 and 3 combined, and at most 8 for class 3 customers. Effectively, this
logic simply allows any capacity “left over” after selling to low classes
to become available for sale to higher classes.

Nesting booking limits in this way avoids the problem of capacity
being simultaneously unavailable for a high class yet available for lower
classes. Most reservations systems that use booking-limit controls quite
sensibly use nested rather than partitioned booking limits for this reason.
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2.1.1.2 Protection Levels
A protection level specifies an amount of capacity to reserve (protect)

for a particular class or set of classes. Again, protection levels can be
nested or partitioned. A partitioned protection level is trivially equivalent
to a partitioned booking limit; a booking limit of 18 on class 2 sales is
equivalent to protecting 18 units of capacity for class 2.

In the nested case, protection levels are again defined for sets of
classes—ordered in a hierarchical manner according to class order. Sup-
pose class 1 is the highest class, class 2 the second highest, and so on.
Then the protection level denoted is defined as the amount of ca-
pacity to save for classes combined—that is, for classes
and higher (in terms of class order). Continuing our example, we might
set a protection level of 12 for class 1 (meaning 12 units of capacity
would be protected for sale only to class 1), a protection level of 22 for
classes 1 and 2 combined, and a protection level of 30 for classes 1, 2,
and 3 combined. (Though frequently no protection level is specified for
this last case since it is clear that all the capacity is available to at least
one of the classes.)

Figure 2.1 shows the relationship between protection levels and book-
ing limits. The booking limit for class is simply the capacity minus
the protection level for classes and higher. That is,

where C is the capacity. For convenience, we define (the highest
class has a booking limit equal to the capacity) and (all classes
combined have a protection level equal to capacity).

2.1.1.3 Standard Versus Theft Nesting
The standard process for using booking limits or nested protection

levels proceeds as follows. Starting with C units of capacity, we begin
receiving bookings. A bookings for class is accepted provided (1) there
is capacity remaining and (2) the total number of requests accepted for
class to date is less than the booking limit (equivalently, the current
capacity remaining is more than the protection level for classes
higher than ). This is called standard nesting, and it is the most natural
and common way to implement nested-capacity controls.

Another alternative, which is less prevalent though still encountered
occasionally in practice, is called theft nesting. In theft nesting, a book-
ing in class not only reduces the allocation for class but also “steals”
from the allocation of all lower classes. So when we accept a request for
class not only is the class allocation reduced by one but so are the
allocations for classes This is equivalent to keeping
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units of capacity protected for future demand from class and higher.
In other words, even though we just accepted a request for class under
theft nesting we continue to reserve units for class and higher, and
to do so requires reducing the allocation for classes
Under standard nesting, in contrast, when we accept a request from class

we effectively reduce by one the capacity we protect for future demand
from class and higher.

The rationale for standard nesting is that the capacity protected for,
say, class 1 is based on a forecast of future demand for class 1. Once
we observe some demand for class 1, we then reduce our estimate of
future demand—and hence the capacity we protect for class 1. Standard
nesting does this by reducing the capacity protected for future class 1
demand on a one-for-one basis after each arriving request is accepted
(and similarly for other classes as well). To illustrate, suppose in our
example demand for class 1 is deterministic and equal to the protection
level Then if we receive 5 requests for class 1, we know for
certain that future demand for class 1 will be only 7 and hence that it
makes sense to reduce the capacity we protect for future demand from
12 to 7, which is precisely what standard nesting does. Theft nesting, in
contrast, intuitively corresponds to an assumption of “memorylessness”
in demand. In other words, it assumes the demand to date for class 1
does not affect our estimate of future demand for class 1. Therefore,
we continue to protect units of capacity for class 1 (and hence must
reduce the allocation for classes ).

The two forms of nesting are in fact equivalent if demand arrives
strictly in low-to-high class order; that is, the demand for class ar-
rives first, followed by the demand for class and so on.2 This is
what the standard (static) single-resource models assume, so for these
static models, the distinction is not important. However, in practice
demand rarely arrives in low-to-high order, and the choice of standard
versus theft nesting matters. With mixed order of arrivals, theft nesting
protects more capacity for higher classes (equivalently, allocates less ca-
pacity to lower classes). Again, however, standard nesting is the norm
in RM practice.

2.1.1.4 Bid Prices
What distinguishes bid-price controls from both booking limits and

protection levels is that they are revenue-based rather than class-based
controls. Specifically, a bid-price control sets a threshold price (which

2It is easy to convince oneself of this fact by tracing out the accept/deny decisions under
both forms of nesting, and doing so is an instructive exercise.
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may depend on variables such as the remaining capacity or time), such
that a request is accepted if its revenue exceeds the threshold price and
rejected if its revenue is less than the threshold price. Bid-price controls
are, in principle, simpler than booking-limit or protection-level controls
because they require only storing a single threshold value at any point
in time—rather than a set of capacity numbers, one for each class. But
to be effective, bid prices must be updated after each sale—and possibly
also with time as well—and this typically requires storing a table of bid
price values indexed by the current available capacity, current time, or
both.

Figure 2.1 shows how bid prices can be used to implement the same
nested-allocation policy as booking limits and protection levels. The bid
price is plotted as a function of the remaining capacity When
there are 12 or fewer units remaining, the bid price is over $75 but less
than $100, so only class 1 demand is accepted. With 13 to 22 units
remaining, the bid price is over $50 but less than $75 so only classes 1
and 2 are accepted. With more than 22 units of capacity available, the
bid price drops below $50 so all three classes are accepted.

Bid-price control is criticized by some as being “unsafe”—the argu-
ment being that having a threshold price as the only control means that
the RM system will sell an unlimited amount of capacity to any class
whose revenues exceed the bid price threshold. But this is true only if
the bid price is not updated. As shown in Figure 2.1, if the bid price is a
function of the current remaining capacity, then it performs exactly like
a booking limit or protection level, closing off capacity to successively
higher classes as capacity is consumed. Without this ability to make bid
prices a function of capacity, however, a simple static threshold is indeed
a somewhat dangerous form of control.

One potential advantage of bid-price controls is their ability to dis-
criminate based on revenue rather than class. Often (see Section 10.1.3.1)
a number of products with different prices are booked in a single class.
RM systems then use an average price as the price associated with a
class. However, if actual revenue information is available for each re-
quest, then a bid-price control can selectively accept only the higher
revenue requests in a class, whereas a control based on class designa-
tion alone can only accept or reject all requests of a class. Of course, if
the exact revenue is not observable at the time of reservation, then this
advantage is lost.

2.1.2 Displacement Cost
While the mathematics of optimal capacity controls can become com-

plex, the overriding logic is simple. First, capacity should be allocated
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to a request if and only if its revenue is greater than the value of the
capacity required to satisfy it. Second, the value of capacity should
be measured by its (expected) displacement cost—or opportunity cost—
which is the expected loss in future revenue from using the capacity now
rather than reserving it for future use.

Theoretically, the displacement-cost idea is captured by using a value
function, that measures the optimal expected revenue as a function
of the remaining capacity The displacement cost is then the difference
between the value function at and the value function at or

Much of the theoretical analysis of the capacity controls
boils down to analyzing this value function. But conceptually, the logic
is simply to compare revenues to displacement costs to make the accept
or deny decision.

2.2 Static Models
In this section, we examine one of the first models for quantity-based

RM, the so-called static3 single-resource models.
The static model makes several assumptions that are worth exam-

ining in some detail. The first is that demand for the different classes
arrives in nonoverlapping intervals in the order of increasing prices of the
classes.4 In reality, demand for the different classes may overlap in time.
However, the nonoverlapping-intervals assumption is a reasonable ap-
proximation (for example, advance-purchase discount demand typically
arrives before full-fare coach demand in the airline case). Moreover, the
optimal controls that emerge from the model can be applied—at least
heuristically—even where demand comes in arbitrary order (using ei-
ther bid prices or the nesting policies, for example). As for the strict
low-before-high assumption, this represents something of a worst-case
scenario; for instance, if high-revenue demand arrives before low-revenue
demand, the problem is trivial because we simply accept demand first
come, first serve.

The second main assumption is that the demands for different classes
are independent random variables. Largely, this assumption is made
for analytical convenience because to deal with dependence in the de-
mand structure would require introducing complex state variables on
the history of observed demand. We can make some justification of the

3The term static here is somewhat of a misnomer because demand does arrive sequentially
over time, albeit in stages ordered from low-revenue to high-revenue demand. However, this
term is now standard and helps distinguish this class of models from dynamic models that
allow arbitrary arrival orders.
4Robinson [445] generalizes the static model to the case where demand from each class arrives
in nonoverlapping intervals but the order is not necessarily from low to high revenue.



34 THE THEORY AND PRACTICE OF REVENUE MANAGEMENT

assumption by appealing to the forecast inputs to the model. That is, to
the extent that there are systematic factors affecting all demand classes
(such as seasonalities), these are often reflected in the forecast and be-
come part of the explained variation in demand in the forecasting model
(for example, as the differences in the forecasted means and variance
on different days). The randomness in the single-resource model is then
only the residual, unexplained variation in demand. So, for example, the
fact that demand for all classes may increase on peak flights does not in
itself cause problems provided the increase is predicted by the forecast-
ing method. Still, one has to worry about possible residual dependence
in the unexplained variation in demand, and this is a potential weakness
of the independence assumption.

A third assumption is that demand for a given class does not depend
on the capacity controls; in particular, it does not depend on the avail-
ability of other classes. Its only justification is if the multiple restrictions
associated with each class are so well designed that customers in a high
revenue class will not buy down to a lower class and if the prices are
so well separated that customers in a lower class will not buy up to a
higher class if the lower class is closed. However, neither is really true
in practice. There is considerable porousness (imperfect segmentation)
in the design of the restrictions, and the price differences between the
classes are rarely that dispersed. The assumption that demand does
not depend on the capacity controls is therefore a weakness, though in
Section 2.6 we look at models that handle imperfect segmentation.

Fourth, the static model suppresses many details about the demand
and control process within each of the periods. This creates a potential
source of confusion when relating these models to actual RM systems. In
particular, the static model assumes an aggregate quantity of demand
arrives in a single stage and the decision is simply how much of this
demand to accept. Yet in a real reservation system, we typically observe
demand sequentially over time, or it may come in batch downloads.
The control decision has to be made knowing only the demand observed
to date and is usually implemented in the form of prespecified controls
uploaded to the reservation system. These details are essentially ignored
in the static model. However, fortunately (and perhaps surprisingly), the
form of the optimal control is not sensitive to this assumption and can
be applied quite independently of how the demand is realized within
a period (all at once, sequentially, or in batches). The simplicity and
robustness of the optimal control is in fact a central result of the theory
for this class of models.

A fifth assumption of the model is that either there are no groups, or
if there are group bookings, they can be partially accepted. Group book-
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ings cause significant methodological problems, and these are discussed
in Section 2.4.

Finally, the static models assume risk-neutrality. This is a reasonable
assumption in practice, since a firm implementing RM typically makes
such decisions for a large number of products sold repeatedly (for ex-
ample, daily flights, daily hotel room stays, and so on). Maximizing
the average revenue, therefore, is what matters in the end. While we
do not cover this case here, some researchers have recently analyzed
the single-resource problem with risk-averse decision makers (Feng and
Xiao [187]).

We start with the simple two-class model in order to build some basic
intuition and then examine the more general case.

2.2.1 Littlewood’s Two-Class Model
The earliest single-resource model for quantity-based RM is due to

Littlewood [347]. The model assumes two product classes, with asso-
ciated prices The capacity is C, and we assume there are no
cancellations or overbooking. Demand for class is denoted and its
distribution is denoted by Demand for class 2 arrives first. The
problem is to decide how much class 2 demand to accept before seeing
the realization of class 1 demand.

The two-class problem is similar to the classic newsboy problem in in-
ventory theory, and the optimal decision can be derived informally using
a simple marginal analysis: Suppose that we have units of capacity re-
maining and we receive a request from class 2. If we accept the request,
we collect revenues of If we do not accept it, we will sell unit (the
marginal unit) at if and only if demand for class 1 is or higher.
That is, if and only if Thus, the expected gain from reserving
the unit for class 1 (the expected marginal value) is
Therefore, it makes sense to accept a class 2 request as long as its price
exceeds this marginal value, or equivalently, if and only if

Note the right-hand side of (2.1) is decreasing in Therefore, there will
be an optimal protection level, denoted such that we accept class 2 if
the remaining capacity exceeds and reject it if the remaining capacity
is or less. Formally, satisfies

If a continuous distribution is used to model demand (as is often
the case), then the optimal protection level is given by the simpler
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expressions

which is known as Littlewood’s rule. Setting a protection level of for
class 1 according to Littlewood’s rule is an optimal policy. Equivalently,
setting a booking limit of on class 2 demand is optimal.
Alternatively, we can use a bid-price control with the bid price set at

We omit a rigorous proof of Littlewood’s rule since it is a special case
of a more general result proved below. However, to gain some insight
into it, consider the following example:

Example 2.1 Suppose is normally distributed with mean and standard devi-
ation Then by Littlewood’s rule, which implies the optimal
protection level can be expressed as

where and denotes the inverse of the standard normal
c.d.f. Thus, we reserve enough capacity to meet the mean demand for class 1, plus
or minus a factor that depends both on the revenue ratio and the demand variation

If the optimal protection level is less than the mean demand; and
if it is greater than the mean demand. In general, the lower the ratio

the more capacity we reserve for class 1. This makes intuitive sense because
we should be willing to take very low prices only when the chances of selling at a high
price are lower.

2.2.2 Models
We next consider the general case of classes. Again, we assume

that demand for the classes arrives in stages, one for each class,
with classes arriving in increasing order of their revenue values. Let the
classes be indexed so that Hence, class (the
lowest price) demand arrives in the first stage (stage ), followed by
class demand in stage and so on, with the highest price class
(class 1) arriving in the last stage (stage 1). Since there is a one-to-one
correspondence between stages and classes, we index both by Demand
and capacity are most often assumed to be discrete, but occasionally we
model them as continuous variables when it helps simplify the analysis
and optimality conditions.

2.2.2.1 Dynamic Programming Formulation
This problem can be formulated as a dynamic program in the stages

(equivalently, classes), with the remaining capacity being the state
variable. At the start of each stage the demand has
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not been realized. Within stage the model assumes that the following
sequence of events occurs:

The realization of the demand occurs, and we observe its value.

We decide on a quantity of this demand to accept. The amount
accepted must be less than the capacity remaining, so The
optimal control is therefore a function of the stage the capacity

and the demand though we often suppress
this explicit dependence on and in what follows.

The revenue is collected, and we proceed to the start of stage
with a remaining capacity of

1.

2.

3.

This sequence of events is assumed for analytical convenience; we
derive the optimal control    “as if” the decision on the amount to
accept is made after knowing the value of demand In reality, of
course, demand arrives sequentially over time, and the control decision
has to be made before observing all the demand However, it turns
out that optimal decisions do not use the prior knowledge of as we
show below. Hence, the assumption that is known is not restrictive.

Let denote the value function at the start of stage Once the
value is observed, the value of is chosen to maximize the current
stage revenue plus the revenue to go, or

subject to the constraint The value function
entering stage is then the expected value of this optimization
with respect to the demand Hence, the Bellman equation is5

with boundary conditions

The values that maximize the right-hand side of (2.3) for each and
form an optimal control policy for this model.

5Readers familiar with dynamic programming may notice that this Bellman equation is of
the form E[max{·}] and not max E[·] as in many standard texts. The relationship between
these two forms is explained in detail in Appendix D. But essentially, the max E[·] form can
be recovered by considering the demand to be a state variable along with While the
two forms can be shown to be equivalent, the E[max{·}] is simpler to work with in many
RM problems. In our case, this leads to the modeling assumption that we optimize “as if”
we observed
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2.2.2.2 Optimal Policy: Discrete Demand and Capacity
We first consider the case where demand and capacity are discrete.

To analyze the form of the optimal control in this case, define

is the expected marginal value of capacity at stage ex-
pected incremental value of the unit of capacity. A key result con-
cerns how these marginal values change with capacity and the stage
(See Appendix 2.A for proof.):

PROPOSITION 2.1  The marginal values         of the value function
defined by (2.3) satisfy

(i)
(ii)

That is, at a given stage the marginal value is decreasing in the
remaining capacity, and at a given capacity level the marginal value
increases in the number of stages remaining. These two properties are
intuitive and greatly simplify the control. To see this, consider the opti-
mization problem at stage         From (2.3) and the definition of
we can write

where we take the summation above to be empty if Since
is decreasing in by Proposition 2.1(i), it follows that the terms in the
sum are decreasing in Thus, it is optimal to
increase (keep adding terms) until the terms
become negative or the upper bound                       is reached, whichever
comes first.

The resulting optimal control can be expressed in terms of optimal
protection levels for (class and higher in the revenue
order) by

(Recall the optimal protection level by convention.) The optimal
control at stage is then

where the notation denotes the positive part of The
quantity is the remaining capacity in excess of the protection
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level, which is the maximum capacity we are willing to sell to class
The situation is shown in Figure 2.2.

In practice, we can simply post the protection level in a reserva-
tion system and accept requests first come, first serve until the capacity
threshold is reached or the stage ends, whichever comes first. Thus,
the optimal protection-level control at stage requires no informa-
tion about the demand yet it produces the same optimal decision
“as if” we knew exactly at the start of stage The reason
for this is that knowledge of does not affect the future value of ca-
pacity, Deciding to accept or reject each request simply involves
comparing current revenues to the marginal cost of capacity, and this
comparison does not depend on how many requests there
are in total.

Proposition 2.1(ii) implies the nested protection structure

This fact is easily seen from Figure 2.2. If  increases with and the
curve decreases with then the optimal protection level will
shift to the left (decrease). Together, this ordering produces the nested
protection-level structure.

One can also use booking limits in place of protection levels to achieve
the same control. Optimal nested booking limits are defined by
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with The optimal control in stage is then to accept

Note that is the total capacity sold prior to stage and
is the booking limit for class so is the remaining
capacity available for class The optimal booking limit is also shown
in Figure 2.2.

Finally, the optimal control can also be implemented through a table
of bid prices. Indeed, if we define the stage bid price by

then the optimal control is

In words, we accept the request in stage if the price
exceeds the bid price value of the unit of capacity that
is allocated. In practice, we can store a table of bid prices and process
requests by sequentially comparing the price of each product to the table
values corresponding to the remaining capacity.

We summarize these results in the following theorem:

THEOREM 2.1 For the static model defined by (2.3), the optimal control
can be achieved using either
(i) Nested protection levels defined by (2.4),
(ii) Nested booking limits defined by (2.6), or
(iii) Bid price tables defined by (2.7).

How to compute these various policies is discussed in Section 2.2.3.

2.2.2.3 Optimality Conditions for Continuous Demand
Next, consider the case where capacity is continuous and demand at

each stage has a continuous distribution. In this case, the dynamic pro-
gram is still given by (2.3); however and are now continuous
quantities. The analysis of the dynamic program is slightly more com-
plex than it is in the discrete-demand case, but many of the details are
quite similar. Hence, we only briefly describe the key differences.

The main change is that the marginal value is now replaced
by the derivative of with respect to This derivative
is still interpreted as the marginal expected value of capacity. And an
argument nearly identical to that in the proof of Proposition 2.1 shows
that the marginal value is decreasing in (equivalently,
is concave in ).
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Therefore, the optimal control in stage is to keep increasing
(keep accepting demand) as long as

and to stop accepting once this condition is violated or the demand
is exhausted, whichever comes first. Again, this decision rule can

be implemented with optimal protection levels, defined by

One of the chief virtues of the continuous model is that it leads to
simplified expressions for the optimal vector of protection levels

We state the basic result without proof (see Brumelle and
McGill [91] for a proof).

First, for an arbitrary vector of protection levels y and vector of de-
mands                                 define the following fill events

is the event that demand to come in stages exceeds
the corresponding protection levels. A necessary and sufficient condition
for to be an optimal vector of protection levels is that it satisfy the

equations

That is, the        fill event should occur with probability equal to the ratio
of class revenue to class 1 revenue. As it should, this reduces to
Littlewood’s rule (2.2) in the            case, since

Note that

so the event can occur only if occurs. Also, if
then Thus, if we must

have to satisfy (2.9). Thus, the optimal protection levels are
strictly increasing in if the revenues are strictly decreasing in

2.2.3 Computational Approaches
At first glance it may appear that the optimal nested allocations are

difficult to compute. However, computing these values is in fact quite
easy and efficient algorithmically. There are two basic approaches: dy-
namic programming and Monte Carlo integration.
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2.2.3.1 Dynamic Programming
The first approach is based on using the dynamic programming recur-

sion (2.3) directly and requires that demand and capacity are discrete—
or in the continuous case that these quantities can be suitably dis-
cretized. The inner optimization in (2.3) is simplified by using the op-
timal protection levels from the previous stage. Thus, substituting
(2.5) into (2.3) we obtain the recursion

where is determined using (2.4), and we define        This procedure
is repeated starting from and working backward to

For discrete-demand distributions, computing the expectation in
(2.10) for each state requires evaluating at most O(C) terms since

Since there are C states (capacity levels),
the complexity at each stage is The critical values can then
be identified from (2.4) in log(C) time by binary search as is
nonincreasing. Indeed, since we know the binary search can
be further constrained to values in the interval Therefore,
computing does not add to the complexity at stage Since these
steps must be repeated for each of the stages (stage need not be
computed as mentioned above), the total complexity of the recursion is

2.2.3.2 Monte Carlo Integration
The second approach to computing optimal protection levels is based

on using (2.9) together with Monte Carlo integration. It is most natu-
rally suited to the case of continuous demand and capacity, though the
discrete case can be computed (at least heuristically) with this method
as well.

The idea is to simulate a large number K of demand vectors,
from the forecast distributions for the

classes. We then progressively sort through these values to find thresh-
olds y that approximately satisfy (2.9).

In what follows, it is convenient to note that

Thus, (2.9) implies that the optimal must satisfy
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since The following algorithm computes the
optimal approximately using the empirical conditional probabilities
estimated from the sample of simulated demand data:

The complexity of this method is which is nearly linear
in the number of simulated demand vectors K. Thus, it is relatively
efficient even with large samples. It is also quite simple to program
and can be used with any general distribution. The following example
illustrates the method:

Example 2.2 Consider a three-class example, where the prices are
and The demand for each class is normally distributed. Class 1 has

a mean of 20 and standard deviation of 9; class 2 has a mean of 45 and standard
deviation of 12. (The statistics for class 3 do not affect the calculation.)

Figure 2.3 shows a plot of the partial sums and for 50
simulated data points of this problem. Since the first ratio the
Monte Carlo algorithm starts by finding a value  such that 70% of these points (35
points) have values above The result is shown in Figure 2.3 by the vertical line
at

In the next iteration of the algorithm, the 35 points to the right of this vertical
line are sorted again by their value and is chosen so that a fraction

of the points (21 points) lie above This occurs at
The algorithm then terminates with the estimates and

STEP 0: Generate and store K random demand vectors

For and compute the partial sums

and form the vector
Initialize a list and counter

STEP 1: Sort the vectors by their component values,
Let denote the element of in this sorted list so that

STEP 2: Set Set

STEP 3: Set and
IF STOP
ELSE GOTO STEP 1.



44 THE THEORY AND PRACTICE OF REVENUE MANAGEMENT

2.2.4 Heuristics
As we have seen, computing optimal controls for the static single-

resource model is not particularly difficult. Despite this fact, exact op-
timization models are not widely used in practice. Indeed, most single-
resource airline RM systems use one of several heuristics to compute
booking limits and protection levels.

There are two main reasons for this state of affairs. The first is simply
a case of practice being one step ahead of the underlying theory. As men-
tioned, in the airline industry the practice of using capacity controls to
manage multiple classes quickly gained popularity following deregulation
in the mid 1970s. But this predates the theory of optimal controls by
more than a decade. The only known optimal controls in the 1970s were
Littlewood’s results for the two-class problem. As a result, heuristics
were developed for the general problem. During the decade fol-
lowing deregulation, RM software embedded these heuristics, and people
grew accustomed to thinking in terms of them. The inertia generated
from this early use of the heuristics is one reason for their continued
popularity today.
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Heuristics are also widely used because they are simpler to code,
quicker to run, and generate revenues that in many cases are close to op-
timal. Indeed, many practitioners in the airline industry simply believe
that even the modest effort of computing optimal controls is not worth
the benefit they provide in improved revenue performance. Proponents
of heuristics argue that the potential improvement from getting better
revenue data and improving demand forecasts swamps the gains from
using optimal controls—reflecting the philosophy that it is better to be
“approximately right” than it is to be “precisely wrong.”

While these points are well taken, such criticisms are somewhat misdi-
rected. For starters, using optimal controls does not mean one has to give
up on improvements in other areas, such as forecasting. These activities
are not mutually exclusive, though a understaffed development group
might very well consider refining optimization modules a low-priority
task. Yet given the very modest cost of coding and computing optimal
controls, the strong objections to the use of optimal controls are often
not entirely rational.

Regardless of one’s view on the use of heuristics, it is important to
understand them. They remain widely used in practice and can also
help develop useful intuition.

We next look at the two most popular heuristics: EMSR-a and EMSR-
b, both of which are attributed to Belobaba [38–40]. Both heuristics
are based on the static, single-resource model defined above
in Section 2.2. They differ only in how they approximate the prob-
lem. Static model assumptions apply: classes are indexed so that

denotes the c.d.f. of class demand, and low-
revenue demand arrives before high-revenue demand in stages that are
indexed by as well. Moreover, for ease of exposition we assume that
capacity and demand are continuous and that the distribution functions

are continuous as well, though these assumptions
are easily relaxed.

2.2.4.1 EMSR-a
EMSR-a (expected marginal seat revenue–version a) is the most widely

publicized heuristic for the single-resource problem. Despite this fact,
it is less popular in practice than its close cousin, EMSR-b, which sur-
prisingly is not well documented in the literature. Generally, EMSR-b
provides better revenue performance, and it is certainly more intuitive,
though EMSR-a is important to know just the same.

EMSR-a is based on the idea of adding the protection levels produced
by applying Littlewood’s rule to successive pairs of classes. Consider
stage in which demand of class arrives with price We are
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interested in computing how much capacity to reserve for the remaining
classes, that is, the protection level, for classes and
higher. To do so, let’s consider a single class among the remaining
classes and compare and in isolation. Considering
only these two classes, we would use Littlewood’s rule (2.2) and reserve
capacity for class where

Repeating for each future class we could likewise
compute how much capacity to reserve for each such class in isolation.
The idea of EMSR-a, then, is simply to add up these individual protec-
tion levels to approximate the total protection level for classes and
higher. That is, set the protection level as

where is given by (2.11). One then repeats this same calculation
for each stage

EMSR-a is certainly simple and has an intuitive appeal. For a short
while it was even believed to be optimal, but this notion was quickly
dispelled once the published work on optimal controls appeared.

Indeed, it is not hard to see intuitively that EMSR-a can be exces-
sively conservative and produce protection levels that are larger than
optimal in certain cases. This is because adding the individual protec-
tion levels       ignores the statistical averaging effect (pooling effect)
produced by aggregating demand across classes. For example, for the
sake of illustration, suppose that at stage all future demand has
the same revenue, i.e., Then EMSR-a will set
protection levels so that

However, it is clear that all these future classes should be aggregated
since they have identical revenues, in which case we can apply Little-
wood’s rule (2.2) to obtain the optimal protection level, using
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Since for any random variables and any numbers

the optimal protection level is less than the EMSR-a protection level,
6 This behavior suggests that EMSR-a may perform badly

when there are large numbers of classes whose revenues are close to-
gether.

2.2.4.2 EMSR-b
EMSR-b (expected marginal seat revenue–version ) is an alternative

single-resource heuristic that avoids the lack-of-pooling defect in EMSR-
a mentioned above. EMSR-b is again based on an approximation that
reduces the problem at each stage to two classes, but in contrast to
EMSR-a, the approximation is based on aggregating demand rather
than aggregating protection levels. Specifically, the demand from fu-
ture classes is aggregated and treated as one class with a revenue equal
to the weighted-average revenue.

Consider stage in which we want to determine protection level
Define the aggregated future demand for classes by

and let the weighted-average revenue from classes denoted
be defined by

Then the EMSR-b protection level for class and higher, is chosen
by Littlewood’s rule (2.2) so that

It is common when using EMSR-b to assume demand for each class is
independent and normally distributed with mean and variance in

6To see this, consider a sample realization of demand, and note that if

then for at least one but the converse need not be true. So the

probability of the event cannot exceed the sum (over )

of the probabilities of the events
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which case

where is the mean and is the variance of the
aggregated demand to come at stage and
(recall is the inverse of the standard normal c.d.f.). Again, one
repeats this calculation for each (See Section 11.A for approximation
formulas for the normal and inverse normal distributions.)

EMSR-b clearly captures the pooling—or statistical averaging—effect
that is lacking in EMSR-a. This is an advantage of EMSR-b over EMSR-
a. However, using the weighted-average revenue is a somewhat crude ap-
proximation that can distort the resulting protection levels. In practice
EMSR-b is more popular and seems to generally perform better than
EMSR-a, though studies comparing the two have at times shown mixed
results. Belobaba [41] reports studies in which EMSR-b is consistently
within 0.5 percent of the optimal revenue, whereas EMSR-a can deviate
by nearly 1.5 percent from the optimal revenue in certain cases, though
with mixed order of arrival and frequent reoptimization, he reports that
both methods perform well. However, another recent study by Polt [425]
using Lufthansa airline data showed more mixed performance, with nei-
ther method dominating the other.

2.2.4.3 Numerical Examples
A few simple numerical examples give some sense of the protection

levels and revenues produced by these two approximations. The example
we consider is based on a slightly modified instance of the data reported
by Wollmer [576]:

Example 2.3 There are four classes, and demand is assumed to be normally distrib-
uted. Table 2.1 shows the demand data and Table 2.2 the protection levels produced
by EMSR-a, EMSR-b, and the optimal policy.
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Note from Table 2.1 that (in this example) there is a considerable
discrepancy between the protection levels computed under the heuristics,
both compared with each other and with the optimal protection levels.

The revenue performance of the methods from a simulation study are
shown in Table 2.2. Capacity is varied from 80 to 150 to create demand
factors (ratio of total mean demand to capacity) in the range 1.7 to
0.9. The percentage suboptimality is also reported (one minus the ratio
of heuristic revenues to optimal revenues). Note for this example that
EMSR-a is slightly better than EMSR-b, though both perform quite
well; the suboptimality gap of EMSR-b reaches a high of 0.52%, while
the maximum suboptimality of EMSR-a is only 0.30%.

Example 2.4 The demand statistics are the same as in Example 2.3, but the revenue
values are more evenly spaced. The data and resulting protection levels are shown in
Tables 2.3 and 2.4.

The revenue performance of the heuristics in Example 2.4 is shown in
Table 2.4. In this case, there is less discrepancy among the protection
levels computed under the heuristics and the optimal policy. The per-
formance of both heuristics is also very good, especially under EMSR-b,
which is for all practical purposes optimal. Performance such as this
helps explain why these heuristics are popular in practice.
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2.3 Adaptive Methods
We next examine an adaptive algorithm for determining optimal pro-

tection levels for the static, single-resource model of Section 2.2.2. The
optimal protection levels in this case are determined by the conditions
(2.8). Typically, application of the optimality conditions (2.8) requires
three steps. First, historical demand data are studied to determine suit-
able models for the demand distributions. Second, forecasting techniques
are applied to estimate the parameters of these distributions. Third, the
forecasts are passed to an optimization routine that solves for protec-
tion levels The resulting controls are then used to make individual
accept or deny decisions as reservations come in. In practice, bookings
from similar resources are fed back into the forecasting system, and the
process is repeated cyclically over time.

In this section, we look at a method for directly updating booking pol-
icy parameters for the next resource usage based on observations of the
performance of the parameters on previous instances, without recourse
to the complex cycles of forecasting and optimization. We show how
to construct a simple adjustment scheme of this sort that is based on
stochastic approximation methods (the Robbins-Monro algorithm [443])
and that provably converges to an optimal policy with repeated ap-
plication. The convergence, however, is guaranteed only for the case
of stationary, independent demand and may be quite slow, requiring a
large number of adjustments to reach a near-optimal set of protection
levels.

2.3.1 Adaptive Algorithm
Our starting point in developing an adaptive algorithm is condition

(2.9), which states that for to be an optimal set of protection levels,
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it must satisfy

For example, if the revenue ratio is 0.6, then this condition says
that the fill event defined by (2.8) should occur on 60% of the
service instances, on average, if  Note that it is easy to determine
the frequency of the fill events from historical records, since it
is necessary only to observe if demand reached the protection levels, not
the degree to which it exceeded them.7

To develop the algorithm, for define

where 1(E) denotes the indicator function of event E (a function that is
1 if event E occurs and is zero otherwise). The quantity will be
negative if the     fill event occurs and positive otherwise. If protection
levels are being adjusted, an occurrence of the       fill event (all of classes
1 through reached their protection levels) suggests that the protection
level should be adjusted upward. Thus – can be viewed
as an adjustment direction for protection level The corresponding
adjustment vector is Define

and let Thus,          – h(y) can be properly
viewed as the expected adjustment vector for protection levels given cur-
rent levels y. The optimality condition (2.9) stipulates that we should
seek a such that the expected adjustment for all protection levels is
zero; or,

The Robbins-Monro [443] algorithm (generalized for vector quantities)
constructs a sequence of parameter estimates, from a
sequence of independent instances, using the recursion

7There are two important exceptions to this statement. First, if happens to exceed the
maximum number of seats available for sale (usually the physical capacity plus an overbooking
pad), then the event is not observable (unless the rejected sales are
recorded). Second, if protection levels are revised during the booking period prior to the
usage of the resource, it can easily happen that a new protection level exceeds the remaining
capacity (a problem similar to the first one) that earlier, high protection levels constrained
demand during part of the booking period in one or more discount classes. In this case, total
demand is not observed (a variant of censorship of the demand data).



The simplest example of a suitable step size sequence is defined by
however, this simple averaging sequence takes small steps early in the

procedure, which can delay convergence. In the development to follow,
we use a sequence of the form where and are constants
chosen to give larger early steps.

The directions can be determined after the completion
of each instance (each departure in the airline case). If the fill event
occurs, and the protection level is increased by

if not, then and is reduced by
Thus protection levels are stepped up when high demand is observed and
stepped down when low demand is observed, with the step size becoming
smaller as the algorithm progresses.

Some relatively mild regularity conditions ensure that the procedure
(2.15) does converge (a.s.) to a value satisfying (See van
Ryzin and McGill [526] for exact conditions as well as bounds on the
rate of convergence.)
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where is a sequence of nonnegative step sizes satisfying

2.3.2 A Numerical Comparison with EMSR and
Censored Forecasting

We next look at a brief numerical example of the performance of the
adaptive algorithm compared with a procedure that combines censored
forecasting with EMSR-b protection levels. These comparisons are based
on simulated data in an idealized stationary setting, but do provide some
insight into the performance of each method.

The combined forecasting/EMSR-b (F/EMSR) scheme constructs a
demand forecast from censored data based on the Kaplan-Meier esti-
mator of the survivor function (See Section 9.4.3.)
Protection levels are set using EMSR-b.

The test problem has four classes (three protection levels). Demand is
modeled using a normal distribution. The distribution data, along with
optimal and EMSR-b protection levels, are shown in Table 2.5. The
protection level is the optimal level when demand is normally distrib-
uted, while is the protection level computed by the
heuristic. To illustrate convergence, starting protection levels are set far
from optimal, corresponding to cases of very high and very low starting
values (Table 2.6). There are two demand scenarios. The high-demand
scenario has a starting inventory of 124 seats, corresponding to a 125%
demand factor (ratio of expected total demand to capacity) and approx-
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imately a 95% load factor (ratio of average number of seats sold to ca-
pacity) under optimal protection levels. The low-demand scenario starts
with 164 seats, resulting in a demand factor of 95% and a load factor of
approximately 90% under optimal protection levels. For the stochastic
approximation procedure, the step size sequence is

Figure 2.4 shows three graphs of the data for the case of low demand
and high starting values. The top graph of Figure 2.4 shows the average
cumulative revenue as a percentage of the optimal revenue for the two
methods as a function of the number of iterations (flights). The error
bars show the 95% confidence intervals about these averages. The mid-
dle graph shows the average protection levels over time for the stochastic
approximation (SA) procedure. The horizontal dotted lines are the op-
timal protection levels. The lowest line corresponds to the middle
line to and the top line to The solid lines are the correspond-
ing average protection levels produced by the stochastic approximation
(SA) method. The error bars on the solid lines give the 25-percentile
and 75-percentile values for each protection level at each iteration, which
provides some sense of the variability in protection levels across sample
paths. The bottom graph shows the identical plot of protection levels
for the F/EMSR method.

Figure 2.4 shows that the F/EMSR procedure converges more quickly
than the SA procedure. In this case, the faster convergence of the
F/EMSR has a significant impact on the cumulative revenue perfor-
mance: F/EMSR generates about 2 to 3% higher revenue on average in
the early iterations. With low demand and low starting values, the two
methods perform comparably.
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The results are quite different in the high demand factor case. Fig-
ure 2.5 shows the simulation results for low starting protection values
and high load factor. Note, as indicated by the error bars in the bottom
graphs, that the F/EMSR procedure is very volatile and somewhat slow
to converge in the early iterations. The revenue effect of this behavior is
quite significant, with F/EMSR generating cumulative revenues roughly
8% lower than optimal and 2 to 3% lower than SA in the early iterations.
However, the performance and protection levels of F/EMSR improve af-
ter about 30 iterations. In contrast, the SA procedure is considerably
more stable, and it converges faster in the early iterations, which ac-
counts for its superior revenue performance. F/EMSR performs badly
in this case because the forecasting procedure suffers from the frequent
censoring caused by a combination of low protection levels and high de-
mand. For high starting protection levels, the F/EMSR performs better,
since there is less initial censoring of data.

This behavior suggests that adaptive methods may be useful as a
means of automatically adjusting protection levels in cases where very
little demand information is available (such as with new products) and
forecasting is difficult due to a high degree of censoring. In such cases,
adaptive methods provide a robust way to adjust protection levels and
may also help speed up the forecasting method itself by nudging pro-
tection levels in the right direction, thereby reducing the amount of
censoring.

2.4 Group Arrivals
Group arrivals can pose additional complications. A group request is

a single request for multiple units of capacity (such as a family of four
traveling together). We briefly describe this case but omit any detailed
formulations because the basic ideas follow readily from what we have
seen thus far (and the more complicated ideas are beyond the scope of
this text).

If groups can be partially accepted—that is, given a request for
units, we can sell any quantity in the range (and more
important, the customer is willing to buy any amount in this range,
something that is not unusual among tour operators)—then there is
little impact on the single-resource models discussed above. Indeed, the
static model (2.3) can be thought of as a group model where in each
period one “large group” of size arrives because we can sell units,
where and is the total available capacity. Thus,
with groups that can be partially accepted, we need only to keep track of
the aggregate demand for each class and the formulations are essentially
the same as those of the static case in Section 2.2.2.
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The real complication in group arrivals occurs when groups must be
accepted on an all-or-none basis—that is, given a request for units
we can sell only all units or none at all. This seemingly modest change
has a profound impact on the structure of optimal allocation policies.
First, we must specify the distribution of group sizes to model how much
demand we have from groups of various sizes. But this in itself does not
pose too much of a theoretical difficulty. The bigger problem is that the
value function may not be concave (the marginal value of capacity may
in fact increase), so using booking limits, protection levels, or bid prices
may not be optimal.

An example illustrates what can go wrong. Consider a static model
with only two stages. Suppose that in the last stage (stage
only groups of size two arrive. In the first stage (stage groups
of varying sizes can arrive. Now suppose that we have units of
capacity remaining. Note the marginal value of the last unit of capacity
in stage 1 is zero; that is, because we only
get demand for groups of size 2 in the last stage, and therefore having
only one unit of capacity is of no value. On the other hand, provided
we have some positive probability of demand for a group of size 2 in
stage 1, then the second unit of capacity will have a positive marginal
value; that is, Hence, the marginal value
of capacity is no longer decreasing in As a result, in first
stage it can be optimal to reject a request for a single unit of some class
when there are two units of capacity remaining but optimal to accept
the same request when there is only one unit of capacity remaining. So
the notion that there is a booking limit above which we will not sell to
a class is no longer valid.

Essentially, the requirement to completely accept or reject groups cre-
ates a combinatorial (bin-packing) phenomenon in allocating capacity.
The resulting nonmonotone value function means that optimal policies
are considerably more complex than in the case where groups can be
partially accepted. Intuitively, one might expect that if a sufficiently
large fraction of demand is from small groups (size one or two) and the
capacities are reasonably large, then these combinatorial effects could be
ignored and the nongroup models may be a good approximation. This
is the implicit assumption in most single-resource RM systems used in
practice.
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2.5 Dynamic Models
Dynamic models relax the assumption that the demand for classes

arrives in a strict low-to-high revenue order. Instead, they allow for an
arbitrary order of arrival, with the possibility of interspersed arrivals of
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several classes. While at first this seems like a strict generalization of
the static case, the dynamic models require the assumption of Markovian
(such as Poisson) arrivals to make them tractable. This puts restrictions
on modeling different levels of variability in demand. Indeed, this limi-
tation on the distribution of demand is the main drawback of dynamic
models in practice. In addition, dynamic models require an estimate of
the pattern of arrivals over time (called the booking curve), which may
be difficult to estimate in certain applications. Thus, the choice of dy-
namic versus static models essentially comes down to a choice of which
set of approximations is more acceptable and what data is available in
any given application.

Other assumptions of the static model are retained. Demand is as-
sumed independent between classes and over time and also independent
of the capacity controls. The firm is again assumed to be risk-neutral.
The justifications (or criticisms) for these assumptions are the same as
in the static-model case.

2.5.1 Formulation and Structural Properties
In the simplest dynamic model, we have classes as before with as-

sociated prices There are T total periods and
indexes the periods, with the time index running forward is the
first period, and is the last period; this is in contrast to the sta-
tic dynamic program, where the stages run from to 1 in the dynamic
programming recursion). Since there is no longer a one-to-one corre-
spondence between periods and classes, we use separate for
periods and for classes.

In each period we assume, by a sufficiently fine discretization of time,
that at most one arrival occurs.8 The probability of an arrival of class
in period is denoted The assumption of at most one arrival per
period implies that we must have

In general, the periods need not be of the same duration. For example,
early in the booking process when demand is low we might use a period of
several days whereas during periods of peak booking activity we might
use a period of less than an hour. Note also the arrival probabilities
may vary with so the mix of classes that arrive may vary over time. In

8 The assumption of one arrival per period can be generalized as shown by Lautenbacher and
Stidham [330], but both theoretically and computationally it is a convenient assumption.
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particular, we do not require lower classes to arrive earlier than higher
classes.

2.5.1.1 Dynamic Program
As before, let denote the remaining capacity and denote the

value function in period Let be a random variable, with
if a demand for class arrives in period and otherwise. Note
that Let if we accept the arrival (if there
has been one) and otherwise. (We suppress the period subscript

of the control as it should be clear from the context.) We want to
maximize the sum of current revenue and the revenue to go, or

The Bellman equation is therefore

where is the expected marginal value
of capacity in period The boundary conditions are 9

and

2.5.2 Optimal Policy
An immediate consequence of (2.17) is that if a class request arrives,

so that then it is optimal to accept the request if and only if

Thus, the optimal control can be implemented using a bid-price control
where the bid price is equal to the marginal value,

9The second boundary condition can be eliminated if we use the control constraint
instead of However, it is simpler conceptually and notationally to

use the boundary conditions instead.



Revenues that exceed this threshold are accepted; those that do not are
rejected.

As in the static case, an important property of the value function is
that it has decreasing marginal value (See
Appendix 2.A for proof.)

PROPOSITION 2.2 The increments of the value function
defined by (2.17) satisfy
(i)
(ii)

This theorem is natural and intuitive since one would expect the value
of additional capacity at any point in time to have a decreasing marginal
benefit and the marginal value at any given remaining capacity  to de-
crease with time (because as time elapses, there are fewer opportunities
to sell the capacity).

As a consequence, the optimization on the right-hand side of (2.17)
can also be implemented as a nested-allocation policy, albeit one that
has time-varying protection levels (or booking limits). Specifically, we
can define time-dependent optimal protection levels

that have the usual interpretation that is the capacity we protect
for classes Then the protection levels are nested,

and it is optimal to accept class if and only if
the remaining capacity exceeds The situation is illustrated in
Figure 2.6.

Time-dependent nested booking limits can also be defined as before
by

That the booking limits and protection levels depend on time in this case
essentially stems from the fact that the demand to come varies with time
in the dynamic model. The change in demand to come as time evolves
effects the opportunity cost and therefore the resulting booking limit
and protection levels.

As a practical matter, because the value function is not likely to
change much over short periods of time, fixing the protection levels or
booking limits computed by a dynamic model and updating them peri-
odically (as is done in most RM systems in practice) is usually close to
optimal. Still, the time-varying nature of the protection levels remains
a key distinction between static and dynamic models.

We summarize these results in the following theorem:
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THEOREM 2.2 For the dynamic model defined by (2.17), the optimal
control can be achieved using either:
(i) Time-dependent nested protection levels defined by (2.19),
(ii) Time-dependent nested booking limits defined by (2.20), or
(iii) Bid-price tables defined by (2.18).

2.5.2.1 Computation
Computationally, the dynamic model is solved by substituting the

optimal policy into (2.17). This yields the recursion

Starting with the boundary condition we proceed
with the recursion backward in time Each stage requires
operations, so the overall complexity is Usually, the value of T
is O(C) because in most practical problems the total expected demand is
the same magnitude as the capacity and the periods are typically chosen
so that there is O(1) arrival per period. So the complexity in terms of
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and C is approximately which is the same as that of the
dynamic program for the static model.

2.6 Customer-Choice Behavior
A key assumption in the models that we have described thus far is

that demand for each of the classes is completely independent of the
capacity controls being applied by the seller. That is, it is assumed
that the likelihood of receiving a request for any given class does not
depend on which other classes are available at the time of the request.
Needless to say, this is a somewhat unrealistic assumption. For example,
in the airline case the likelihood of selling a full-fare ticket may very well
depend on whether a discount fare is available at the same time and the
likelihood that a customer buys at all may depend on the lowest available
fare. When customers buy a higher fare when a discount is closed it is
called buy-up (from the firm’s point of view, this is also called sell-up);
when they choose another flight when a discount is closed it is called
diversion.

Clearly, such customer behavior could have important RM conse-
quences and ought to be considered when making control decisions.
We next look at some heuristic and exact methods for incorporating
customer-choice behavior in single-resource problems.

2.6.1 Buy-Up Factors
One approach to modeling customer-choice behavior that works with

the two-class model is to include buy-up probabilities—also called buy-up
factors—in the formulation.

The approach works as follows. Consider the simple two-class static
model, and recall that Littlewood’s rule (2.2) (slightly restated) is to
accept demand from class 2 if and only if

where is the remaining capacity—that is, if the revenue from accepting
class 2 exceeds the marginal value of the unit of capacity required to
satisfy the request. Now suppose that there is a probability that a
customer for class 2 will buy class 1 if class 2 is closed. The net benefit
of accepting the request is still the same, but now rather than losing the
request when we reject it, there is some chance the customer will buy
up to class 1. If so, we earn a net benefit of (the
class 1 revenue minus the expected marginal cost). Thus, it is optimal
to accept class 2 now if or
equivalently if
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Note that the right-hand side of the modified rule (2.22) is strictly larger
than the right-hand side in Littlewood’s rule (2.21), which means that
the modified rule (2.22) is more likely to reject class 2 demand. This is
intuitive because with the possibility of customers upgrading to class 1,
we should be more eager to close class 2.

The difficulty with this approach is that it does not extend to more
than two classes—at least not in an exact way—because the probability
that a customer buys class given that class is closed depends not only
on and but also on which other classes are also available. In other
words, with more than two classes the customer faces a multinomial
choice rather than a binary choice.

However, one can at least heuristically extend the buy-up factor idea
to EMSR-a or EMSR-b because these heuristics approximate the multi-
class problem using the two-class model.

For example, EMSR-b can be extended to allow for a buy-up factor by
modifying the equation for determining the protection level (2.14),
as follows:

where is the probability that a customer of class buys up to
one of the classes is the weighted-average revenue from
these classes as defined by (2.13); and is an estimate of the
average revenue received given that a class customer buys up to
one of the classes (for example, if customers are
assumed to buy up to the next-highest price class). Again, the net result
of this change is to increase the protection level and close down class

earlier than one would do under the traditional EMSR-b rule.10

While this modification to EMSR-b provides a simple heuristic way to
incorporate choice behavior, it is a somewhat ad hoc adjustment to an
already heuristic approach to the problem. Beyond the limitations of the
model and its assumptions, there are some serious difficulties involved
in estimating the buy-up factors. Indeed, in current applications of the
model, they are often simply made-up, reasonable-sounding numbers.
Moreover, the assumptions of the model can clash with unconstrain-
ing and recapture procedures that are subsequently applied, resulting
in double counting of demand. Despite these limitations, buy-up fac-
tors have proved useful as a rough-cut approach for incorporating choice
behavior in practice.

10That it increases the protection level about the usual EMSR-b value can be seen by noting
that in the usual EMSR-b case and thus, has to
increase to satisfy the equality (2.23).
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2.6.2 Discrete-Choice Models

2.6.2.1 Model Definition

We next look at a single-resource problem in which customer-choice
behavior is explicitly modeled using a general discrete-choice model. In
contrast to the heuristic approach of buy-up factors, this model provides
a more theoretically sound approach to incorporating choice behavior.
It also provides insights into how choice behavior affects the optimal
availability controls. The theory is first developed for the general choice
model case and then applied to some special demand models.

As in the traditional dynamic model of Section 2.5, time is discrete
and indexed by with the indices running forward in time is the
period of resource usage). In each period there is at most one arrival.
The probability of arrival is denoted by which we assume, for ease of
exposition, is the same for all time-periods There are classes, and we
let denote the entire set of classes. We let choice index
0 denote the no-purchase choice; that is, the event that the customer
does not purchase any of the classes offered. Each class has an
associated price and without loss of generality we index classes so
that We let denote the revenue of the
no-purchase choice.

Customer purchase behavior is modeled as follows. In each period
the seller chooses a subset of classes to offer. When the

set of classes is offered in period the probability that a customer
chooses class is denoted denotes the no-purchase
probability.

The probability that a sale of class is made in period is therefore
and the probability that no sale is made is

Note that this last expression reflects the fact that having no sales in a
period could be due either to no arrival at all or an arrival that does not
purchase. This leads to an incomplete-data problem when estimating
the model, as discussed in Section 9.4.1.2.

The only condition we impose on the choice probabilities is that
they define a proper probability function. That is, for every set
the probabilities satisfy
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This includes most choice models of practical interest (see Ben-Akiva and
Lerman [48]) and even some rather pathological cases.11 The following
running example will be used to illustrate the model and analysis:

Example 2.5 An airline offers three fare products—Y, M, and K. These products
differ in terms of revenues and conditions as shown in Table 2.7. The airline has

five segments of customers—two business segments and three leisure segments. The
segments differ in terms of the restrictions that they qualify for and the fares they are
willing to pay. The data describing each segment are given in Table 2.8. The second

column of Table 2.8 gives the probability that an arriving customer is from each given
segment.

Given this data for Example 2.5, the first four columns of Table 2.9
give the choice probabilities that would result.12

11For example, some psychologists have shown that customers can be overwhelmed by more
choices, and they may become more reluctant to purchase as more options are offered (see
Iyengar and Lepper (265)). Such cases would be covered by a suitable choice of that
results in the total probability of purchase, being decreasing in S.
12To see how the probabilities in Table 2.9 are derived, consider the set S = {Y, K}. If
S = {Y,K} is offered, segments Business 1 and Business 2 buy the Y fare because they
cannot qualify for both the SA stay and 21-day advance-purchase restrictions on K, so

Similarly, Leisure 1 cannot qualify for the SA stay restriction of K and
is not willing to purchase Y, so these customers do not purchase at all. Segments Leisure 2 and
3, however, qualify for both restrictions on K and purchase K. Hence,
Class M is not offered, so The other rows of Table 2.9 are filled out similarly.
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This particular method of generating choice probabilities is only for
illustration. Other choice models could be used and in general any proper
set of probabilities could be used to populate Table 2.9.

2.6.2.2 Formulation
As before, let C denote the total capacity, T the number of time-

periods, the current period, and the number of remaining inventory
units. Define the value function as the maximum expected revenue
obtainable from periods given that there are inventory
units remaining at time Then the Bellman equation for is

where denotes the marginal cost of
capacity in the next period, and we have used the fact that for all S,

The boundary conditions are

Note one key difference in this formulation compared to our analysis
of the traditional independent-class models of Section 2.2.2 and Sec-
tion 2.5—we assume the seller precommits to the open set of classes S
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in each period, while in the traditional models, we assume the seller ob-
serves the class of the request and then makes an accept or deny decision
based on the class. The reason for the difference is that in the traditional
models the class of an arriving request is completely independent of the
controls, so it doesn’t matter whether we precommit to the set of open
classes or not. However, in the choice-based model, the class that an
arriving customer chooses depends (through the choice model on
which classes S we report as being open. Hence, the formulation (2.24)
reflects this fact (we are taking max E[·] in 2.24 instead of E[max(·)]);
we must choose S prior to seeing the realization of the choice decision.

2.6.2.3 Structure of the Optimal Policy
The problem (2.24) at first seems to have very little structure, but

a sequence of simplifications provides a good characterization of the
optimal policy. The first simplification is to write (2.24) in more compact
form as

where

denotes the total probability of purchase, and

denotes the total expected revenue from offering set S. Table 2.9 gives
the values Q(S) and R(S) for our Example 2.5. For theoretical purposes,
we also consider allowing the seller to randomize over the sets S that
are offered at the beginning of each time-period, but this relaxation is
not strictly needed since there is always at least one set S that achieves
the maximum in (2.26).

The second simplification is to note that not all subsets need
to be considered when maximizing the right-hand side of (2.26). Indeed,
the search can be reduced to only those sets that are efficient as defined
below:

DEFINITION 2.1 A set T is said to be inefficient if there exist proba-
bilities with such that

A set is said to be efficient if no such probabilities exist.
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In words, a set T is inefficient if we can use a randomization of other
sets S to produce an expected revenue that is strictly greater than R(T)
with no increase in the probability of purchase Q(T).

The significance of inefficient sets is that they can be eliminated from
consideration:

PROPOSITION 2.3 An inefficient set is never an optimal solution to
(2.24).

The proof is omitted, but the fact that such sets should be eliminated
from consideration is quite intuitive from (2.26); an inefficient set T
provides strictly less revenue R(T) than do other sets and incurs at least
as high a probability of consuming capacity Q(T) (and hence incurs at
least as high an opportunity cost in (2.26)).

For Example 2.5, Table 2.9 shows which sets are efficient—namely, the
sets {Y}, {Y,K}, and {Y,K,M} . That these sets are efficient follows
from inspection of Figure 2.7, which shows a scatter plot of the values
Q(S) and R(S) for all subsets S. Note from this figure and Definition 2.1
that an efficient set is a point that is on the “efficient frontier” of the set
of points {Q(S), R(S)}, Here, “efficiency” is with respect to the
tradeoff between expected revenue R(S) and probability of sale Q(S).

The third simplification is to note that the efficient sets can be easily
ordered. Indeed, let denote the number of efficient sets. These sets can
be indexed such that both the revenues and probabilities of
purchase are monotone increasing in the index. That is, if the collection
of efficient sets is indexed such that
then as well. The proof of this fact is
again omitted, but it is easy to see intuitively from Figure 2.7. Note from
Table 2.9 that there are efficient sets {Y}, {Y, K}, and {Y, K, M}.
These can be ordered and with
associated probabilities of purchase and and
prices and as claimed.

Henceforth, we assume the efficient sets are denoted and
are indexed in increasing revenue and probability order. Also, to simplify
notation we let and and note and are
both increasing in So the Bellman equation can be further simplified
to

The final simplification is to show that when expressed in terms of the
sequence of efficient sets, the optimal policy has a simple
form as stated in the following theorem:
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THEOREM 2.3 An optimal policy for (2.24) is to select a set from
among the efficient, ordered sets that maximizes
(2.27). Moreover, for a fixed the largest optimal index is increasing
in the remaining capacity and for any fixed is increasing in time

The proof of this theorem is involved but derives from the fact that
the marginal value is decreasing in (see Appendix 2.A for
a proof) and the fact that the optimal index is decreasing in this
marginal value.

This characterization is significant for several reasons. First, it shows
that the optimal sets can be reduced to only those that are efficient,
which in many cases significantly reduces the number of sets we need
to consider. Moreover, it shows that this limited number of sets can be
sequenced in a natural way and that the more capacity we have (or the
less time remaining), the higher the set we should use in this sequence.

For example, applying Theorem 2.3 to Example 2.5, we see that the
efficient sets and would be
used as follows. With very large amounts of capacity remaining, is
optimal: all three fare classes are opened. As capacity is consumed, at



Finding the efficient sets is, in general, computationally complex. The
naive approach is to enumerate all subsets of and for each set
T solve a linear program (in variables to test for efficiency
using the conditions in Definition 2.1.

However, a more efficient alternative is to use the following largest
marginal revenue procedure. First, let Then successive sets can
be found by the following recursion. Let be the efficient set. Then
the efficient set, is found by checking among the sets S
with and for the one that maximizes the
marginal revenue ratio

(Note that this is simply the increase in expected revenue per unit in-
crease in expected demand.) The procedure starts with and stops
as soon as no sets S with and exist; it re-
turns the complete sequence Since there are subsets
to check at each step, the recursion has complexity where
is the number of efficient sets (which in the worst case could be
itself).

For small numbers of classes, this largest marginal revenue procedure
is practical, especially since it can be performed off line. But it is still
exponential in the number of classes For large numbers of classes,
heuristic or analytic approaches can be used to reduce the complexity
of identifying efficient sets. For example, one could enumerate a limited
collection of subsets S rather than all subsets and apply the largest
marginal revenue procedure to determine which subsets in the collection
are efficient relative to other sets in the collection. In some special cases,
as shown below, one can identify which subsets are efficient analytically,
thus eliminating the need to enumerate all possible subsets.
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some point we switch to only offering class M is closed, and only
Y and K are offered. As capacity is reduced further, at some point we
close class K and offer only class Y (set is used).

Note what’s odd here; it can be optimal to offer the highest fare Y and
the lowest fare K, but not the middle fare M. This is because opening M
causes some buy-down from Y to M, whereas K is sufficiently restricted
to prevent buy-down. Only when capacity is plentiful is M opened.

2.6.2.4 Identifying Efficient Sets
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2.6.2.5 Optimality of Nested-Allocation Policies
The optimization results above also have important implications for

the optimality of nested-allocation policies. Indeed, Definition 2.1 and
Theorem 2.3 can be used to provide a complete characterization of cases
in which nested-allocation polices are optimal. They also can be used to
provide conditions under which the optimal nesting is by revenue order.

We begin with a precise definition of a nested-allocation policy in the
context of the choice model:

DEFINITION 2.2 A control policy is called a nested policy if there is
an increasing family of subsets and an index
that is increasing in such that set is chosen at time when the
remaining capacity is

Though this is a somewhat abstract definition of a nested policy, it is
in fact a natural generalization of nested allocations from the traditional
single-resource models of Section 2.2.2 and 2.5 and implies an ordering
of the classes based on when they first appear in the increasing sequence
of sets That is, class is considered “higher” than class in the
nesting order if class appears earlier in the sequence. Returning to
Example 2.5, we see that the efficient sets are indeed nested according
to this definition because and
are increasing. Class Y would be considered the highest in the nested
order, followed by class K and then class M.

If the optimal policy is nested in this sense, then we can define opti-
mal protection levels such that classes lower in the
nesting order than those in are closed if the remaining capacity is less
than just as in the traditional single-resource case. The optimal
protection levels for are defined by

Nested booking limits can also be defined in the usual way,

We again return to Example 2.5 to illustrate this concept. Table 2.10
shows the objective function value for each of the
three efficient sets for a particular marginal value function

which we assume is given in this example. Capacities are in
the range The last column of Table 2.10 gives the index,

of the efficient set that is optimal for each capacity
Note that for capacities 1,2, and 3, the set is the optimal

set, so class Y is the only open fare. Once we reach 4 units of remaining
capacity, set becomes optimal and we open class K in
addition to class Y. When the remaining capacity reaches 13, set
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{Y, K, M} becomes optimal, and we open M in addition to Y and K.
As a result, the optimal protection level for set is and the
protection level for set is has a protection level equal to
capacity.

2.6.2.6 Nesting by Revenue Order
Revenues provide a natural nesting ordering, and, as described ear-

lier in this chapter, this is traditionally how most quantity-based RM
systems have been conceived and implemented. From a practical stand-
point, therefore, it is important to understand when a particular choice
model leads to nesting by revenue order. Yet Example 2.5 makes clear
that nesting by revenue order need not be the optimal policy in general.

Talluri and van Ryzin [500] provide conditions that guarantee a given
choice model will always have this property. The results show, for ex-
ample, why the optimal control for the traditional independent-demand
model is nested by revenue order. Talluri and van Ryzin [500] also show
that if the choice probabilities follow the multinomial-logit (MNL) choice
model (See Section 7.2.2.3.), then the optimal policy is always nested by
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revenue order. A similar result holds if customers’ choice behavior is such
that they always buy the lowest-price open class. However, in general
nesting by revenue order need not be optimal.

2.6.2.7 Comparisons of Optimality Conditions
The optimality conditions in the nested-by-revenue-order case also

provide some intuition into how choice-based controls differ from tra-
ditional controls. Let denote the set of the highest
classes (in revenue order). Then one can show it is optimal to open class

if and only if

where

is the change (usually an increase for most choice models) in purchase
probability for class as the result of not offering class This
expression is intuitive: The left-hand side is the probability of selling
class times the “net gain” from selling it; that is, the revenue we
get from class minus the opportunity cost, of using a
unit of capacity. The right-hand side is the net gain (loss) among the
other classes caused by eliminating (adding) class (the sum over
all the other class in of the change in purchase probability times
the net gain from selling Therefore, the condition (2.28) simply says
that if the expected gain on class exceeds the incremental loss on
the other classes caused by adding then it pays to open
otherwise, should be closed.

The expression (2.28) should be compared with the optimality condi-
tion for independent-demand model; namely, it is optimal to open class

if and only if

(Indeed, note that (2.28) reduces to the above expression for the
independent-demand model since for this model for all

Note that the right-hand side above is zero while the right-hand
side of (2.28) is nonzero (typically positive). This happens because in the
independent-demand model, if we close class we lose all demand
for that class. Therefore, it is optimal to accept class whenever

exceeds the opportunity cost However, in the choice-
based model, if we close class customers choose from among the
other classes that are offered (e.g., from Hence, the threshold on
the right-hand side of (2.28) is nonzero. This difference reflects the fact
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that customers may buy up to a higher class, so there is some nonzero
benefit to rejecting a request for

2.6.2.8 A Numerical Comparison to EMSR-b with Buy-Up
We next look at the results of a small simulation study comparing

choice-based methods to a traditional EMSR-b method with buy-up
as described in Section 2.6.1. While the EMSR-b model is developed
under the static-model assumptions, it is frequently used as a heuristic
in the dynamic case by simply aggregating the total demand to come for
each class. Also, it is one of the few models available that incorporates
some type of choice behavior. For these reasons, it serves as a useful
benchmark for comparison.

This simulations are based on our running three-class example, Ex-
ample 2.5. We compare the optimal control given by the choice dynamic
program with the traditional EMSR-b (buy-up) recommendations. (Re-
call that for Example 2.5 the optimal dynamic programming policy uses
the fare classes in the order Y, K, M, whereas the EMSR-b uses them in
the fare order Y, M, K.)

The capacity C = 20, and there are three population sizes: 15,20,
and 25. The fares, restrictions, and customer segments are as given in
Table 2.8. For a population size of 20 this results in an unconstrained
mean and variance as shown in Table 2.11. These statistics are used to
create inputs for EMSR-b. The buy-up factors are computed as shown

in Table 2.12, which lists the unconstrained choices and demands when
all classes are open. (N.E. signifies that the segment is not eligible.)
This estimate roughly mimics the traditional practice of unconstraining
and forecasting demand in each class. Table 2.12 then sums the uncon-
strained demands for each fare class. The buy-up factors are estimated
as follows. The buy-up factor for K is given by the percentage K cus-
tomers who would buy up to M if we go from offering {Y, M, K} to
{Y, M}. Similarly the buy-up factor for M is the fraction who buy up
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to Y when going from offering {Y, M} to Y. Table 2.12 shows these
demands and buy-up factors for a population size of 20, and Table 2.13
shows the computed EMSR-b protection levels for this population size.
The results for the three load factors are summarized in Table 2.14.

Note that the choice dynamic program shows significant improvements

on this example, achieving an 11.5% improvement in revenue in the high-
demand case. Again, part of this improvement can be attributed to the
fact that the choice dynamic program uses a different sequence of classes
(only the efficient sets {Y}, {Y, K}, {Y, M, K}).

2.7 Notes and Sources
The notion of theft versus standard nesting is not well documented

and is part of the folklore of RM practice. Our understanding, however,
greatly benefited from discussions with our colleagues Peter Belobaba,
Sanne de Boer, and Craig Hopperstad.

The earliest paper on the static models of Section 2.2 is Little-
wood [347]. Another early applied paper is Bhatia and Parekh [64].
But there are close connections to earlier work on the stock-rationing
problem in the inventory literature by Kaplan [288] and Topkis [515];
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see also Gerchak [209, 210] and Ha [246]. Indeed, Topkis’s [515] results
can be used to show the optimality of nested-allocation policies.

Optimal policies for the case were obtained in close succession
(using slightly different methods and assumptions) in papers by Brumelle
and McGill [91], Curry [139], Robinson [445], and Wollmer [576]. See
also McGill’s thesis [375]. Robinson [445] also analyzed the case where
the order of arrival is not the same as the revenue order. Brumelle et al.
[90] analyzed a two-class static model with dependent demand.

The Monte Carlo method for computing optimal overbooking limits
presented in Section 2.2.3.2 is due to Robinson [445].

The dynamic model of Section 2.5 was first analyzed by Lee and
Hersh [336]. However, the proofs of Propositions 2.1 and 2.2 in Ap-
pendix 2.A are due to Lautenbacher and Stidham [330], who provided a
unified analysis of both the static and dynamic single-resource models.
Walczak and Brumelle [543] relate this problem to a dynamic pricing
problem using a Markov model of demand that allows for partial infor-
mation on the revenue values or customer types. See Liang [342] for an
analysis of a continuous-time version of the dynamic model.

The EMSR-a and EMSR-b heuristics are both due to Belobaba. The
most detailed coverage of EMSR-a is contained in Belobaba’s 1987 the-
sis [39], but see also the published articles from it [38] and [40]. EMSR-b
was introduced in [41]; see also Belobaba and Weatherford [37].

The problem of group or batch request in Section 2.4 was addressed
by Lee and Hersh [336] for the partially accepted case. For the more
complex case where groups must be completely accepted, see Walczak
and Brumelle [544], Kleywegt and Papastavrou [307], and Van Slyke and
Young [530].

The adaptive algorithm in Section 2 3 is due to van Ryzin and
McGill [526]. The buy-up heuristics in Section 2.6.1 are due to Be-
lobaba [39, 38, 40]. See also Belobaba and Weatherford [37], Weather-
ford [555], and the simulation study of Bohutinsky [81]. See Titze [514]
for a discussion of passenger behavior in the simple two-class model.
The material in Section 2.6.2 on choice-based models is from Talluri
and van Ryzin [500]; see also Algers and Besser [7] and Andersson [18]
for an application of discrete-choice models at SAS. For a good refer-
ence on discrete-choice modeling, see Ben-Akiva and Lerman [48]. De
Boer [155] is another recent work that addresses customer choice in a
single-resource problem.

APPENDIX 2.A: Monotonicity Proofs
The proofs of monotonicity are based on a lemma of Stidham [487] originally

developed to analyze queueing-control problems. The lemma was adapted to provide

THE THEORY AND PRACTICE OF REVENUE MANAGEMENT



APPENDIX 2.A: Monotonicity Proofs 77

a convexity proof for a general single-resource problem, which includes both the static
and dynamic models, in work by Lautenbacher and Stidham [330]. The proof here
follows theirs.

We begin with a definition:

DEFINITION 2-2.A.3 A function defined on the set of nonnegative integers,
is concave if it has nonincreasing differences. That is, is

nonincreasing in

LEMMA 2-2.A.1  Suppose is concave. Let be defined by

for any given and nonnegative integer Then is concave in
as well.

Proof
First, note that by changing variables to we can write
where

We first analyze Let Since is concave,
is also concave, and moreover is nondecreasing for values of and

nonincreasing for values of Therefore, for a given and

Therefore, in the range and using the fact that is concave

For it follows that so is trivially concave
in this range.

Finally, for from the concavity of

Thus, is concave in and since is concave in
as well. QED

Proof of Proposition 2.1
We first prove part (i) of Proposition 2.1—namely, that the marginal value
is nonincreasing in (that is concave in The proof is by induction on the
stages. Note that in the terminal stage (stage 0), for all which is
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trivially concave. Now assume that is concave in and consider Note
that

The inner maximization is precisely of the form given by Lemma 2-2.A.1 with
Hence, it follows that for any realization of the function

is concave in Since it is a weighted average (nonnegative
weights) of concave functions, and hence it follows that is concave as well.

Part (ii) of the Proposition 2.1 says that the marginal value at a given capacity
at stage is less than at stage This is shown as follows:

where the first inequality follows because is the optimal protection level at stage
the second inequality follows from the nonnegativity of

and the last inequality follows from the fact that
is decreasing in QED

Proof of Proposition 2.2 Similarly, we can use Lemma 2-2.A.1 to show that the
increments of the value function defined by (2.17) are nonincreasing as
well: is concave in The proof is by induction on First, note
for all so is trivially decreasing in Next, assume is concave
and consider period The Bellman equation (2.17) is

The inner maximization is again in the form of Lemma 2-2.A.1 with Hence,
the function

is concave in for any realization of Since it follows
that is concave in as well.

To show monotonicity in note that
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where the last inequality follows from the fact that and
hence for any realization

QED

Proof of Monotonicity of Marginal Values from the Choice-Based Model
We next show for completeness that the marginal values in the choice-based models

are also decreasing in remaining capacity. Namely,

PROPOSITION 2-2.A.4 For the choice-based single-resource problem defined by
(2.24), the value function satisfies

and

Proof
The proof is by induction on First, the statement is trivially true for
by the boundary conditions (2.25a). Assume it is true for period and consider
period Let denote the optimal solution to (2.24) and note

From the optimality of the set defined by the following inequalities hold:

and
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Substituting into (2.A.1) we obtain

Rearranging and canceling terms yields

By induction, and
Therefore,

To show the marginal values are monotone increasing in the remaining time, note
that

From the monotonicity in we have that and therefore
for any value

Hence

QEDas well, and it follows that
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